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ABSTRACT

In this report, a method is presented to extrapolate measurements from Nuclear

Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is

based on a time-domain extrapolation function which is obtained from the Singularity

Expansion Method representation of the measured incident field of the NEMP simulator.

Once the time-domain extrapolation function is determined, the responses recorded

during an assessment can be extrapolated simply by convolving them with the time-domain

extrapolation function.

It is found thaL to obtain useful extrapolated responses, the incident field measure-

ment needs to be made minimum phase; otherwise unbounded results can be obtained.

Results obtained with this technique are presented, using data from actual

assessments.

RkSUMEk

Ce rapport d6crit une m~thode pour extrapoler des mesures obtenues lors de tests

d'impulsions 6lectromagn~tiques (IEM) directement dans le domaine temporel. Cette

mthode utilise une fonction d'extrapolation temporelle obtenue par [a m~thode d'expansion

des singularit~s appliqu6e au champ incident mesur6 du gdndrateur d'IEM. A partir de cette

fonction d'extrapolation, les rfponses enregistr~es lors de test d'IEM peuvent tre

extrapoles simplement en effectuant une convolution. 11 est d6montr6 que pour obtenir Line

extrapolation valable, les mesures du champ incident doivent etre A. phase minimale. Des

r~sultats obtenus avec cette m~thode et utilisant des mesures r elles sont pr6sent6s.
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EXECUTIVE SUMMARY

Most Nuclear Electromagnetic Pulse (NEMP) simulators do not reproduce the

expected NEMP threat. They fail to reproduce both the waveform and tile peak field

strength of the perceived threat level. This is especially true for radiating and hybrid

simulators, which produce a waveform which is significantly different from the waveform of

the perceived threat.
To compensate for these shortcomings, the measured responses in NEMP

assessments have to be corrected (extrapolated) to calculate the response that would be

expected from a NEMP.
In this report, a method is presented to extrapolate such measurements directly in

the time domain.
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1 INTRODUCTION

Most Nuclear Electromagnetic Pulse (NEMP) simulators do not reproduce the

expected NEMP threat as layed down by AEP 4 [1]. They fail to reproduce both the

waveform and the peak field strength of the perceived threat level (also known as the

criterion environment), which includes reflections from the earth for ground-based facilities,

but not so for airborne systems. To compensate for these shortcomings, the measured

responses in NEMP assessments have to be corrected (extrapolated) to calculate the

response that would be expected from a NEMP.

This is a particular problem for radiating and hybrid simulators, which produce a
waveform which is significantly different from the waveform of the perceived threat. The

measurements from NEMP assessments using such simulators have therefore always to be

extrapolated.

In this report, what is known as incident field ertrapolation will be addressed (see
Baum [2], type 3A). This type of extrapolation not only corrects for the difference in
waveform, but also tries to correct the different spatial behaviour of the incident field of the

simulator, compared with the criterion environment. An extrapolation function which is an

average over the space of interest, i.e., the test volume of the simulator, is therefore

constructed.

Chapter 2 gives an overview of the basic incident field extrapolation method, and
derives some properties of the extrapolation function based on signal theory considerations.
How the incident field extrapolation method has been implemented in the past is also

addressed in Chapter 2. Traditional implementations are without eception based on

frequency-domain techniques.

An extrapolation technique which uses time-domain techniques is presented in

Chapter 3. This technique constructs the extrapolation function entirely in the time domain.

Some results are presented in Chapter 4.
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2 INCIDENT FIELD EXTRAPOLATION

With incident field extrapolation, an extrapolation function is constructed which is
an average over the space of interest, i.e., the test volume of the simulator. Furthermore,
the system under test is assumed to be configured in the normal operating-mode for the
system, and the interaction between the simulator structure and the object is neglected.

Extrapolation to correct differences in polarization, angle of incidence, or direction
of propagation of the incident field between the criterion environment and the simulation
will not be addressed in this report. This simplifies the analysis and notation. Also

geometrical differences between the test environment and the normal operating environm-
ent, most importantly the presence or absence of the influence of the earth, will not be
considered. Therefore, the type of extrapolation addressed in this report is limited to
airborne systems in bounded wave simulators and ground-based facilities for radiating

simulators.

2.1 THE BASIC FORMULATION

Let the response of a linear and time-invariant system in its normal operating-mode
and environment to an incident NEMP be denoted by g(t). The response g(t) can be, for
example, an electric or a magnetic field, a current or a voltage. Then g(t) is the response of
the system in the criterion environment, and is given by2

t

g(t) = h(t-r) eEMP(T) dr = h(t) * eEMP(t), (I)

where the asterisk denotes the convolution operator, and h(t) is the impulse response of the

system. When necessary, the latter takes into account reflections from the earth.
Furthermore, eEMP(t) is the waveform of the perceived threat of the NEMP, and can be the
incident electric or the incident magnetic field. For of a high-altitude NEMP environment,

eE\Ip(t) is usually given by (Bell Laboratory waveform)

eEMP(t) = A(e- e-15), (2)

2 For simplicity a scalar notation has been employed throughout the text.
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with

A = 5.278x 104 [V/m],
a = 3.705x 106 [s 1],3)
1G = 3.908x 108 [s-].

The impulse response of the system during the simulation will be the same as the impulse

response during its normal operating-mode, only if the following three conditions are

satisfied:
- the interaction between the system under test and the simulator structure can be

neglected,
- the system is configured the same as during its normal operating-mode,
- the test environment is the same as the normal operating-mode environment (i.e., an

airborne system must be tested without the influence of the earth, and vice versa for

a ground-based system).

Assuming that the above mentioned conditions are satisfied, the response of the system in

the NEMP simulator is given by (assuming a linear system)

gj.(t) = h(t) * esim(t), (4)

where esim(t) is the incident electric or incident magnetic field of the simulator. In this
context, incident means the field in the working volume of the simulator in absence of the

system under test. Furthermore, the system response gjm(t) is the same physical quantity as

g(t) in Eq.(1).

It is well-known that an approximation to the response g(t) can be reconstructed in

the following way (see Baum [2], type 3A)

gxt) = Sf'{X()Gsim(s)}, (5)

where g.(t) denotes the extrapolated response, which is, unfortunately, not necessarily equal

to g(t). The difference between gx(t) and g(t) is the (unknown) error in the extrapolation.

Furthermore in Eq.(5), a quantity indicated with a capital letter denotes a complex

frequency-domain quantity, 1{.} denotes the inverse Laplace transform operator, and s

denotes the complex-frequency variable s = a + j&. X(s) is the extrapolation transfer
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function given by

X(s) = EEM(S)/Esi.(S). (6)

Instead of using Eq.(5), another representation for the extrapolated response is

&(t) = x(t) * gsimt). (7)

Eqs.(5) and (7) clearly show that X(s) plays the role of a transfer function, and x(t) that of
the impulse response pertaining to the transfer function X(s).

The extrapolation impulse response is determined by

x(t) = 9-'{X(s)) = $F-'{EEMP(S)/Esim(S)}, (8)

or directly in the time domain

x(t) = eEMP(t) * esi1(t), (9)

in which esim(t) is the inverse signal of esim(t), defined by

e -1 (t) - 9-1{1/Esi.(s)}. (10)

Notice that esim(t) and e-lsim(t) are related by

esim(t) * es-A(t) = 6(t), (1)

where 6(t) denotes the Dirac delta function.
When the incident field of the simulator not only differs in waveform and peak field

strength from the criterion environment, but also exhibits a different spatial behaviour, the
extrapolation transfer function X(s) depends on the point of observation. This is usually the
case with radiating simulators such as FEL-TNO's EMIS-3. It is advantageous, however, to
define an "average" extrapolation function which will be used for all positions in the test
volume. In that case, Eim(s) may be taken as a geometrical average, i.e., the average of
several field-mapping measurements at different positions in the test volume.

Some requirements for the extrapolation functions will be discussed in the next
section.
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2.2 SOME PROPERTIES OF THE EXTRAPOLATION FUNCTION

Although the formulation of the incident field extrapolation is quite straightforward,

some difficulties arise which we will address in this chapter. But before we do so, we first

introduce some definitions.

Definition 1: A signal f(t) is said to be bounded if and only if there exists a finite positive

constant M, such that

If(t) I < M, Vt.

Definition 2: A transfer function H(s) is said to be stable if and only if its impulse response

h(t) is bounded.

Definition 3: A transfer function H(s) is said to be strictly stable if and only if its response

to a bounded input is bounded.

Definition 3 leads to the following theorem:

Theorem 1: A transfer function H(s) is strictly stable if its impulse response h(t) satisfies the

inequality

+0o

f I[h(t) Idt < co.

-00

The extrapolation process can be called successful and of practical use, only if the

extrapolated response is causal and bounded. From Eq.(7) and Definition 3, we conclude

that the extrapolation impulse response x(t) must then be causal, and the extrapolation

transfer function X(s) strictly stable.
Because the extrapolation impulse response is a convolution of two causal signals,

causality is always guaranteed. Whether or not the extrapolation transfer function is strictly

stable, however, depends on e-1.jt). In fact, it is easy to show that X(s) is strictly stable if

and only if e',im(t) is bounded. This puts some restrictions on e'sim(t)3.

To analyze the restrictions we have to impose on e'sji(t), consider a bounded signal

f(t). In principle, the Laplace transform F(s) of f(t) has a finite number of poles, a finite
number of zeros, and some branch points in the complex-frequency plane. It can be proven

Note that esim(t) # 1/esim(t).
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easily that a necessary (but not sufficient) requirement for f(t) to be bounded, is that its
poles must be located in the left half-plane or on the jrj-axis of the complex-frequency plane.

Since F'(s) = 1/F(s), the poles of F(s) are the zeros of F(s). But more importantly, the

zeros of F(s) are the poles of FP(s). This yields the following theorem:

Theorem 2: For a bounded signal f(t) to have a bounded inverse signal f'(t), where

f(t) * f1(t) = 6(t), it is necessary but not sufficient that the poles and zeros of its Laplace
transform F(s) lie only in the left half-plane or on the j&)-axis of the complex-frequency

plane.

A signal whose Laplace transform F(s) has the above mentioned properties is called a
minimum-phase signal. See Zadeh et al. [31 for a more elaborate treatment of minimum-
phase signals. We conclude therefore that for the extrapolation transfer function X(s) to be

strictlv stable, Esm(S) needs to be a minimum-phase signal, or needs to be made minimum
phase if it is not.

With respect to the latter remark, it is important to note that the magnitude of the

spectrum of a signal whose Laplace transform has some zeros located in the right half-plane,
is the same as that of a minimum-phase signal whose Laplace transform has those zeros
reflected with respect to the j&)-axis into the left half-plane.

Note that if F(s) in Theorem 2 is a rational function, for f 1 (t) to be bounded it is
sLIfficient that its poles and zeros are located in the left half-plane, as a rational function
does not have branch points.

2.3 TRADITIONAL IMPLEMENTATIONS OF INCIDENT FIELD EXTRAPOLATION

Traditional implementations of incident field extrapolation are based on Eq.(5) with

s =j&), but differ in the way X(j&) is computed. We mention the following three methods for

determining X(j&)4:

1. compute Es,,(j&) with a Fast Fourier Transform (FFT);
2. compute E,(j&) with a FFT, but use a minimum-phase fit of the amplitude of

Esim(j )) (see Fisher et al. [4]);

3. approximate eim(t) by a Singularity Expansion Method (SEM) representation. then
E,,(j) is also known (see Van de Sande [5]).

4 Note that EEMp(j?) is available in analytical form.
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All of these methods compute the extrapolated response gj(t) by applying the inverse FFT
to X(jj) G5i,/(jr). For an elaborate treatment of the SEM the reader is referred to Baum

[6].
Method 1 has the disadvantage that it can yield an unstable extrapolation transfer

function as has been pointed out in Section 2.2. To circumvent this, Method 2 has been
employed. In this method, the phase of Esi.m(j&) is determined from IE , I(j&) I as if E,,,(j&)
is a minimum-phase signal. This seems to assure a strictly stable extrapolation transfer
function. For more details on how to construct the phase of a signal from the magnitude of
its spectrum see Oppenheim et al. [7].

The advantage of Method 3 is that no aliasing error occurs. and that no high-
frequency noise is introduced as a result of a truncated time window. However, Method 3
does not guarantee a stable extrapolation transfer function. With care these difficulties can
be overcome and an extrapolation procedure based upon Method 3 and the considerations
given in Section 2.2 will be developed in the next chapter.
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3 TIME-DOMAIN INCIDENT FIELD EXTRAPOLATION

Method 3 of Section 2.3 has some useful properties. We mention:

the extrapolation transfer function contains no aliasing errors;

the extrapolation transfer function contains no quantization noise and no high-
frequency noise due to a truncated time window;

the extrapolation transfer function is known for all frequencies below the Nyquist

criterion, which enhances the low-frequency resolution.

Since the extrapolation transfer function is known analytically, it is possible to perform the
extrapolation entirely in the time domain. Once the extrapolation impulse response is
computed, the extrapolated responses can be found by convolving the measured signals with
the extrapolation impulse response. This idea will be pursued in the subsequent sections.

3.1 THE SEM REPRESENTATION OF A TRANSIENT SIGNAL

The SEM postulates that a transient signal can be written as a series of exponentials

with complex-valued arguments. So, according to the SEM a causal transient signal f(t) can
be represented as

N
f(t) z: _,Aies'tu(t), (12)

i-I

with

- s : a simple pole,

- Ai : the residue pertaining to the pole si,

- U(t) : the Heaviside step function,

- N : number of poles.

In general, the poles and residues are complex valued, but since the signal f(t) is real valued,

they occur in complex-conjugate pairs. For f(t) to be bounded, all the poles s, have to lie in
the left half-plane or on the ja-axis of the complex-frequency plane, i.e., {si E C: .*(s,) 5 0}.

To extract the poles and residues of a transient signal, several methods are known.
We mention Prony's method (see Kay [8]), and the Pencil-Of-Functions (POF) technique

(see MacKay [9]). Treatment of these methods is beyond the scope of this report.
Once the poles and residues of f(t) are computed with either Prony's method or the

POF technique, the Laplace transform of the signal is also known. It is given by (partial-
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fraction expansion)

N

F(s) = Ai-. (13)

This representation was used in Van de Sande [51 to approximate Esim(S). The extrapolation

transfer function was then constructed using the Laplace transform of Eq.(2), and the

extrapolated response was computed by applying the inverse FFT to X(jtd) G,,(ji&).

The inverse FFT, however, can be circumvented entirely by determining the

extrapolation impulse response analytically. For that purpose, the partial-fraction expansion

of Eq.(13) will be casted in a rational form, i.e.,

N N N

F(s) = AiH(s-sj)/ H(s-sj) - (s) (14)
i,1 j- j=1

J*i

where p(s) is the polynomial of the numerator which is of degree N-1, and q(s) is the

polynomial of the denominator and is of degree N. The polynomial p(s) is given by

N

p(s) = EAipi(s), (15)
i=l

and

N

q(s) = -(s-sj), (16)

in which

N q(s)p (s) = 17 (s-sj) - ~s
(s-s) (17)

j*i

As the complex poles and residues occur in complex-conjugate pairs, it can be proven that

the coefficients of both p(s) and q(s) are real valued.
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Generally, the polynomial p(s) is of degree N-1 5, so it has N-1 zeros. This allows the

following representation for p(s)

N-1
p(s) = c I- (s-z;), (18)

j-1

where the zs are the zeros of p(s) (and of F(s)), i.e., p(z) = 0, and c is a proportionality

constant to be determined later. It can be shown that c E R, which also follows from the fact

that the complex poles and residues occur in complex-conjugate pairs.

The zeros zj can be found from

N

p(s) = FAipi(s) = 0, (19)
i-I

and have to be determined numerically with a root find algorithm, such as the IMSL

subroutine ZPLRC (see [10]). It is noted that the zeros depend on the poles and residues,

but a direct relation cannot be established.

Once the zeros z, are known, the constant c can be found from the value of F(s) at

s = 0. After substituting Eq.(18) in Eq.(14), we find

N-1clI (s-Zi) (20)
F(s) - p(s) - _ j-1

q(s) q(s)

and after equating this result with Eq.(13), this yields for c at s = 0

N N(rIJs) E Aisi-
c = i1 (21)

N-1

j-1

5 It can be proven that if f(O) = 0, p(s) is of degree N-2.
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3.2 THE EXTRAPOLATION IMPULSE RESPONSE

To determine the extrapolation impulse response, es1 (t) is approximated with a SEM
representation. To be able to do so, the poles and residues of esim(t) have to be determined
first with a pole extraction method, e.g. with Prony's method or the POF-technique.

Subsequently, the zeros of Esim(S) are determined from its poles and residues in the way

described in Section 3.1. This yields the following representation for Es,,(s) (cf. Eq.(14))

Esim(S) (22)

where q(s) and p(s) are given by Eqs.(16) and (18), respectively. The roots of q(s) are the

poles of EsiJs), while the roots of p(s) are the zeros of Ei,1 (s). Since esi,(t) is a real-valued
signal, any complex-valued zeros occur in complex-conjugate pairs.

It was proven in Section 2.2 that, for the extrapolation transfer function to be strictly

stable, all the zeros of Esim(S) are required to lie in the left half-plane. In general, this is not
the case, so that Esim(S) has to be made minimum phase simply by negating the real part of

any zeros which lie in the right half-plane.

Using the representation of Eq.(22) for Eim(S), the extrapolation transfer function is

given by

X(s) = q(s) EEMp(S). (23)A~S)

If Eq.(2) is used as the waveform to which the response is required, we find for EE\m.1 (s)

EEMP(S) =A( 1 - 1...) = A(-a) 1 (24)
s+a s+f3 (S+cr)(s+9)

After substituting Eq.(24) in Eq.(23), and after applying a partial-fraction expansion of X(s),

we finally get
N+1

X(s) -,1B 1 (25)

il S -Z i

in which we have ordered the zeros so that {z i e C: i=1, ..., N-1} are the zeros of the
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minimum-phase S'IPiia of Es.m(s), zN = -a, and ZN+1 = -fi. BE C denotes the residue

pertaining to the zero zi given by

N

A Zi z-S)
Bi = lim (s-zi) X(s) -(P-a) 1 (26)S'_ Zi  c N I

11 (Zi -Zj)

j-1

From Eq.(25) the corresponding extrapolation impulse response is easily found. It is given

by

N+1

x(t) = , BieZU (t). (27)
i-l

Since x(t) is real valued, any complex-valued zeros z i and residues Bi occur in complex-

conjugate pairs.

Obviously, since {zi e C: Ot(zi) _5 0}, X(s) is strictly stable, which follows from
Theorem 1.

The extrapolated responses can I.. be found (see Eq.(7)) by convolving the

measured signals with the extrapolation impulse response of Eq.(27).

-12-



4 NUMERICAL RESULTS

The procedure outlined in the previous chapter has been employed to a field
mapping of the Vertical Polarized Dipole (VPD) version of FEL-TNOs EMIS-3 simulator
(a transportable radiating simulator). We will use as the waveform to which the response
is required (the criterion environment) the double-exponential waveform given by Eq.(2).
This waveform is depicted in Figure 4.1.

Figure 4.2 shows an incident-field measurement (H-field measurement) of the above
mentioned simulator. The digitizer used has a record length of 512 samples, and an 8-bit
resolution. When this signal is extrapolated, it should be approximately equal to the
waveform of the criterion environment.

Firstly, the field-mapping measurement is approximated with a SEM representation
using Prony's method. The number of poles (and residues) to approximate the original signal
is 17. The signal that has been reconstructed using the 17 poles and residues is shown in
Figure 4.3.

Secondly, using the poles and residues generated by the Prony program, the zeros and
the proportionality constant of the rational representation of the approximated signal are
determined. It was found that some zeros are located in the right half-plane of the complex-
frequency plane, so that a minimum-phase signal is constructed simply by negating the real
part of the zeros which are located in the right half-plane. The resulting minimum-phase
signal is shown in Figure 4.4. The magnitude of the spectrum of the minimum-phase signal
is not shown, because it is the same as that of Figure 4.3b. Comparing Figure 4.3a with
Figure 4.4a shows that the only noticeable difference between these signals is around the
peak value of the signals.

Subsequently, the extrapolation impulse response is constructed using the double-
exponential waveform and the minimum-phase signal of Figure 4.4a. It is shown in Figure
4.5a. The magnitude and the phase of the spectrum of the corresponding extrapolation
transfer function are depicted in the Figures 4.5b and 4.5c, respectively. In Figure 4.5d, the
phase of the unstable extrapolation transfer function is shown (using the approximated signal

of Figure 4.3a).
Finally, to show the effects of each step in the process of obtaining the extrapolation

impulse response, the extrapolation impulse response is convolved with the following three
signals:
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1. the minimum-phase signal of Figure 4.4a,
2. the approximated signal of Figure 4.3a,

3. the original signal of Figure 4.2.

The results are depicted in the Figures 4.6, 4.7 and 4.8, respectively. The convolution is
determined using the procedure described in Appendix A. Each of the first two data sets
contained the same number of samples as the original signal, i.e., 512 samples.

Obviously, convolving the minimum-phase signal with the extrapolation impulse
response, which is constructed from the minimum-phase signal, yields the exact waveform

of the criterion environment. This is demonstrated in Figure 4.6 (compare this figure with
Figure 4.1).

The influence on the extrapolated signal of making the approximated signal minimum
phase can be seen from Figure 4.7. This shows that (in this case) the effect is small.

The total influence of approximating the original signal with a SEM representation,
and making this signal minimum phase is depicted in Figure 4.8. When judging this last plot,
one has to keep in mind that the extrapolation transfer function enhances the high
frequencies, so that noise and quantization errors in the original signal are amplified.

150

100

50 -

0

0 50 100 150 200 250 300

t [ ns]

Figure 4.1 The prevailing waveform in the criterion environment.
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Figure 4.2 Incident H-field generated by the simulator.
a) time domain,
b) magnitude of the spectrum,
c) phase of the spectrum.
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Figure 4.3 Incident H-field measurement approximated with Prony's method (17
poles).
a) time-domain,
b) magnitude of the spectrum,
c) phase of the spectrum.
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Figure 4.4 Minimum-phase signal of approximated incident H-field measurement.
a) time domain,
b) phase of the spectrum.
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Figure 4.5 The extrapolation function pertaining to the signal of Figure 4.2a:
a) extrapolation impulse response,
b) magnitude of the extrapolation transfer function,
c) phase of the extrapolation transfer function,
d) phase of the non-stable extrapolation transfer function.
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Figure 4.6 Result of the convolution of the extrapolation impulse response with
the minimum-phase signal of Figure 4.4a.
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Figure 4.7 Result of the convolution of the extrapolation impulse response with
the approximated signal of Figure 4.3a.
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Figure 4.8 Result of the convolution of the extrapolation impulse response with
the original signal of Figure 4.2.
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5 CONCLUSIONS

A method has been developed and implemented to perform the incident field

extrapolation.
A necessary requirement for the extrapolation transfer function to be strictly stable,

is that it is a minimum-phase signal. Making the extrapolation transfer function minimum
phase can be accomplished very easily with this method.

Because the method which has been presented does not use a Fast Fourier
Transform, it circumvents aliasing errors, high-frequency noise due to a truncated time

window and quantization noise in the extrapolation transfer function.
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A EVALUATION OF THE CONVOLUTION INTEGRAL

The time scales of the extrapolation impulse response x(t) and the signal to be

extrapolated gsim(t) can differ significantly, so that special care has to be taken to compute

the convolution integral given by (cf. Eq.(7))
t

gJ) = x(t) * g,.' (t) = f gij(t-r) x(r) dr. (A.1)

Using the fact that the extrapolation impulse response is known in analytical form, however,

the convolution integral can be computed very accurately.

Let t = nat, where At is the time step of the sampled datagim(t), thengjn) =g(ndt)

is given by

gx(n) = gsi(n t-T) x(r) dr. (A.2)

The time step is assumed to be so small over the interval of integration f(i-1)At, iAt], that

g,,,(nAt-r) may be approximated by

gm(nAt-r) (iAt-) + gsim(n-i). (i-1)Atsr<iAt (A.3)

After substituting Eq.(A.3) in Eq.(A.2), this yields
n

g(n) = ,gi(n-i) xl(i) - gsij(n-i+l) x 1(i-1)
i-I (A.4)gs~im(n -i+l) -g.i~ i a

At

where xl(i) denotes the integrated extrapolation impulse response given by

iAt N*1 B.S 5

x1(i) i x,(iAt) = dr = + (e J "- 1). (A.5)
i-0 Sj
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Using the notation x,(i) for the twice integrated extrapolation impulse response, i.e.,

iAt N-.1 Bj e s i"t-
X'(i) X2(iAt) =f xj(r) dr = J it,(A.6)

0 j- Sj Si

we obtain

n

g.,(n) = Egij.(n-i) xl(i) - gsjm (n-i+1) xl(i-1)

i.= i+ )-SIMn (A.7)

(n-i (X2(i)-X(i-1)).

After collecting terms, Eq.(A.7) is finally rewritten as

g.,(n) =-[x 1 (O) At ]g(1) -x2(O

At

+1 x2(i-1) -2x,(i) +x,(i+1) -g~n
At
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